Part Number Hot Search : 
05001 383L2 TCR2EE15 A4011 HC405 CS41F 20M126 LM2904
Product Description
Full Text Search
 

To Download MAX6399ATA-T Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-3655; Rev 1; 3/06
High-Voltage, Overvoltage/Undervoltage, Protection Switch Controller
General Description
The MAX6399 is a small overvoltage and undervoltage protection circuit. The device can monitor a DC-DC output voltage and quickly disconnect the power source from the DC-DC input load when an overvoltage condition occurs. A power-OK output signals when the DC-DC input voltage falls below an adjustable threshold. This controller architecture provides the ability to size the external n-channel MOSFET to meet specific load current requirements. When the DC-DC monitored output voltage is below the user-adjustable overvoltage threshold, the GATE output of the MAX6399 goes high to enhance the n-channel MOSFET. The MAX6399 offers internal charge-pump circuitry that allows the GATE voltage to be 10V above the input voltage (VGS = 10V) to fully enhance the external n-channel MOSFET, thus minimizing the drainto-source resistance. When the monitored output voltage rises above the user-adjusted overvoltage threshold, the GATE output rapidly pulls low to shut off the MOSFET. The MOSFET remains latched off until either the MAX6399 input power or SHDN input is cycled. The MAX6399 includes a logic-low shutdown input that disables the GATE. An internal overtemperature detector also disables the gate when the MAX6399 temperature reaches the thermal-shutdown threshold. The device operates over a wide supply voltage range (5.75V to 72V) and is offered in a small TDFN package, fully specified from -40C to +125C.
Features
Wide Supply Voltage Range (5.75V to 72V) Internal Charge Pump Ensures n-Channel MOSFET is Fully Enhanced During Normal Operation (VGS = 10V) Fast GATE Shutoff During Overvoltage with 20mA Sink Capability Latches Off External n-Channel MOSFET During High-Voltage Transients Adjustable DC-DC Input Undervoltage Threshold Power-OK Output Adjustable DC-DC Output Overvoltage Thresholds Overtemperature Shutdown Protection Fully Specified from -40C to +125C
MAX6399
Ordering Information
PART MAX6399ATA-T PIN-PACKAGE 8 TDFN-8 TOP MARK ANE PKG CODE T833-2
Applications
Networking Server Telecom RAID
Typical Operating Circuit
DC-DC CONVERTER IN OUT EN 12V IN GATE OUT GND LOAD
Pin Configuration
OUT_SET GATE 6 TOP VIEW OUT GND 5
8
7
MAX6399
MAX6399
*EP 1 IN 2 SHDN 3 SET 4 POK
SHDN OUT_SET SET 3.3V POK GND
TDFN
*EXPOSED PAD. CONNECT TO GND.
________________________________________________________________ Maxim Integrated Products
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.
High-Voltage, Overvoltage/Undervoltage, Protection Switch Controller MAX6399
ABSOLUTE MAXIMUM RATINGS
IN, GATE, OUT .......................................................-0.3V to +80V SHDN.............................................................-0.3V to (IN + 0.3V) OUT ........................................................................-0.3V to +80V GATE to OUT..........................................................-0.3V to +20V OUT_SET, SET, POK ..............................................-0.3V to +12V Maximum Current (All pins) ................................................50mA Continuous Power Dissipation (TA = +70C) 8-Pin TDFN (derate 18.2mW/C above +70C) .........1455mW Operating Temperature Range .........................-40C to +125C Junction Temperature ......................................................+150C Storage Temperature Range .............................-65C to +150C Lead Temperature Range................................................+300C
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VIN = 14V; CGATE = 6000pF, TA = -40C to +125C, unless otherwise noted. Typical values are at TA = +25C.) (Note 1)
PARAMETER Supply Voltage Range IN Supply Current IN Undervoltage Lockout IN Undervoltage Lockout Hysteresis SET Threshold Voltage SET Threshold Hysteresis SET Input Current Startup Response Time GATE Rise Time SET to GATE Prop Delay tOV VTH (SET) VHYST ISET tSTART SHDN rising (Note 2) GATE rising from GND to VOUT + 8V, CGATE = 6000pF, OUT = GND SET rising from VTH - 100mV to VTH + 100mV VOUT = VIN = 5V, RGATE to IN = 1M GATE Output-Voltage High VOH VOUT = VIN; VIN 14V, RGATE to IN = 1M GATE Output-Voltage Low GATE Charge-Pump Current GATE to OUT Clamp Voltage SHDN Logic-High Input Voltage SHDN Logic-Low Input Voltage SHDN Input Pulldown Current Thermal-Shutdown Temperature (Note 3) Thermal-Shutdown Hysteresis POWER-OK (POK) OUT_SET Threshold VTH
(OUT_SET)
SYMBOL VIN IIN SHDN = high SHDN = low
CONDITIONS
MIN 5.75
TYP 100 10
MAX 72.00 130 22 5.50
UNITS V A V mV
VIN rising, enables GATE VIN falling, GATE off With respect to GND, SET rising
4.68
5 155
0.480 -50
0.5 5
0.517 +50
V % VTH nA s ms
100 1 0.5 VIN + 3.6V VIN + 15V VIN + 3.8V VIN + 10V 75 13.8 1.4 0.4 18.0 VIN + 4.0V
s
V VIN + 10.7V 0.3 V A V V V A C C
VOL IGATE VCLMP VIH VIL
GATE sinking 20mA, VOUT_SET = GND GATE = GND
V SHDN = 2V, SHDN is internally pulled down to GND
1 +150 20
OUT_SET rising
1.205
1.23
1.258
V
2
_______________________________________________________________________________________
High-Voltage, Overvoltage/Undervoltage, Protection Switch Controller
ELECTRICAL CHARACTERISTICS (continued)
(VIN = 14V; CGATE = 6000pF, TA = -40C to +125C, unless otherwise noted. Typical values are at TA = +25C.) (Note 1)
PARAMETER OUT_SET Hysteresis OUT_SET to POK Delay POK Output Voltage Low POK Leakage Current VOL VOUT_SET rising or falling VIN 1.5V, ISINK = 3.2mA, POK asserted VOUT_SET = 1.4V SYMBOL CONDITIONS MIN TYP 5 35 0.45 100 MAX UNITS % VTH
(OUT_SET)
MAX6399
s V nA
Note 1: Specifications to -40C are guaranteed by design and not production tested. Note 2: The MAX6399 powers up with the external FET in off mode (VGATE = GND). The external FET turns on tSTART after the device is powered up and all input conditions are valid. Note 3: For accurate overtemperature shutdown performance, place the device in close thermal contact with the external MOSFET.
Typical Operating Characteristics
(VIN = 14V, CGATE = 6nF, unless otherwise noted.)
SUPPLY CURRENT vs. INPUT VOLTAGE
MAX6399 toc01 MAX6399 toc02
SUPPLY CURRENT vs. INPUT VOLTAGE
150 140 130 SUPPLY CURRENT (A) 120 110 100 90 80 70 60 50 40 0 20 40 INPUT VOLTAGE (V) 60 80 GATE ON 20 18 16 SUPPLY CURRENT (A) 14 12 10 8 6 4 2 0 0
GATE-DRIVE VOLTAGE vs. INPUT VOLTAGE
VOUT = VIN 10 VGATE - VOUT (V) 8 6 4 2 0
MAX6399 toc03
12
GATE OFF
20
40 INPUT VOLTAGE (V)
60
80
4
6
8
10 12 14 16 18 20 22 24 INPUT VOLTAGE (V)
UVLO THRESHOLD vs. TEMPERATURE
MAX6399 toc04
SET THRESHOLD vs. TEMPERATURE
508 SET THRESHOLD VOLTAGE (V) 506 504 502 500 498 496 494 492 490
MAX6399 toc05
OUT_SET THRESHOLD vs. TEMPERATURE
1.25 1.24 1.23 1.22 1.21 1.20 1.19 1.18 1.17 1.16 OUT_SET FALLING OUT_SET RISING
MAX6399 toc06
6.0 5.8 5.6 5.4 VUVLO (V) 5.2 5.0 4.8 4.6 4.4 4.2 4.0 -50 -25 0 25 50 75 100
510
1.26 OUT_SET THRESHOLD VOLTAGE (V)
125
-50
-25
0
25
50
75
100
125
-50
-25
0
25
50
75
100
125
TEMPERATURE (C)
TEMPERATURE (C)
TEMPERATURE (C)
_______________________________________________________________________________________
3
High-Voltage, Overvoltage/Undervoltage, Protection Switch Controller MAX6399
Typical Operating Characteristics (continued)
(VIN = 14V, CGATE = 6nF, unless otherwise noted.)
GATE-TO-OUT CLAMP VOLTAGE vs. TEMPERATURE
MAX6399 toc07
GATE-DRIVE VOLTAGE vs. TEMPERATURE
MAX6399 toc08
STARTUP WAVEFORM
MAX6399 toc09
17.0 GATE-TO-OUT CLAMP VOLTAGE (V) 16.9 16.8 16.7 16.6 16.5 16.4 16.3 16.2 16.1 16.0 -50 -25 0 25 50 75 100
10.500 10.495 GATE-DRIVE VOLTAGE (V) 10.490 10.485 10.480 10.475 10.470 10.465 10.460 10.455 10.450
POK PULLED TO 3.3V
VUV = 9V
VIN 10V/div VGATE 10V/div
VOUT 10V/div VPOK 5V/div -50 -25 0 25 50 75 100 125 2ms/div TEMPERATURE (C)
125
TEMPERATURE (C)
STARTUP WAVEFORM (SHDN RISING)
MAX6399 toc10
OVERVOLTAGE SWITCH FAULT
MAX6399 toc11
POK PULLED TO 3.3V
VSHDN 2V/div VGATE 10V/div
VOV = 4V VIN = 14V 3.3V
4V VDC_DC 100mV/div
VGATE 10V/div VOUT 10V/div VPOK 5V/div 400s/div
VOUT 10V/div
UNDERVOLTAGE FAULT
MAX6399 toc12
VIN 5V/div
VGATE 20V/div VOUT 10V/div VUV = 9V POK PULLED TO 3.3V 100s/div VPOK 5V/div
4
_______________________________________________________________________________________
High-Voltage, Overvoltage/Undervoltage, Protection Switch Controller MAX6399
Pin Description
PIN 1 2 NAME IN SHDN FUNCTION Supply Voltage Input. Bypass with a 10F capacitor (minimum). Shutdown Input. Drive SHDN low to force GATE low, turning off the external n-channel MOSFET. SHDN is internally pulled down to GND with a 1A current source. Toggle SHDN to unlatch GATE after an overvoltage condition. Connect to IN for normal operation. Overvoltage Threshold Adjustment Input. Use SET to monitor a system output voltage. Connect SET to an external resistor voltage-divider network to adjust the desired overvoltage limit threshold. GATE is quickly turned off when SET rises above its 0.5V (typ) threshold. Power-OK Open-Drain Output. POK asserts low when OUT_SET falls below its 1.23V (typ) threshold. Ground Gate-Drive Output. Connect GATE to the gate of an external n-channel FET. GATE is a charge pump with a 100A pullup current to IN + 10V (typ) during normal operation. GATE is quickly turned off during an overvoltage condition. GATE remains latched off until the power is recycled or SHDN is toggled. GATE pulls low when SHDN is low. Output Voltage-Sense Input. Connect to the source of the external n-channel MOSFET.
3 4 5
SET POK GND
6
GATE
7 8 --
OUT
Undervoltage Detector Input. Use OUT_SET to monitor the source of the MOSFET. Connect a OUT_SET resistor-divider from OUT to OUT_SET to adjust the desired undervoltage threshold. POK asserts low when OUT_SET falls below its 1.23V threshold. EP Exposed Pad. Connect to ground plane.
Detailed Description
IN THERMAL PROTECTION UVLO CHARGE PUMP 5V SET GATE
0.5V
OUT
MAX6399
1.23V
SHDN POK
GND OUT_SET
Figure 1. Functional Diagram
The MAX6399 is an ultra-small, low-current protection circuit utilized in DC-DC converter applications. The MAX6399 monitors the input and output voltages of a DC-DC converter for undervoltage and overvoltage conditions. The MAX6399 controls an external n-channel MOSFET to isolate the load during an overvoltage condition. The device allows system designers to size the external n-channel MOSFET to their load current and board size. The MAX6399 drives the MOSFET's gate high when the monitored DC-DC output voltage is below the programmable overvoltage threshold, programmed through SET. An internal charge-pump circuit provides a guaranteed 10V gate-to-source drive to ensure low input-toload voltage drops in normal operating modes. When the monitored DC-DC output voltage rises above the user-adjusted overvoltage threshold, GATE latches low, turning off the MOSFET. The MOSFET remains off until the power is recycled or by toggling SHDN. The MAX6399 also monitors for an undervoltage condition at the input of the DC-DC converter through OUT_SET. An active-high, open-drain, power-good output can be used to drive the EN input, notifying the system when the monitored voltage is below the adjusted undervoltage voltage threshold.
_______________________________________________________________________________________
5
High-Voltage, Overvoltage/Undervoltage, Protection Switch Controller MAX6399
The MAX6399 includes internal thermal-shutdown protection, disabling the external MOSFET if the device reaches overtemperature conditions.
VOV = 4V VIN = 14V 4V VDC_DC 500mV/div
Shutdown Control
The MAX6399 active-low SHDN input turns off the external MOSFET, disconnecting the load and reducing power consumption. After power is applied and SHDN is driven above its logic-high voltage, there is a 100s delay before GATE begins to enhance. SHDN is also utilized to unlatch GATE after an overvoltage condition has been removed.
3V
VGATE 10V/div
GATE Voltage
The MAX6399 uses a high-efficiency charge pump to generate the GATE voltage. Upon VIN exceeding the 5V (typ) UVLO threshold, GATE enhances 10V above IN (for VIN 14V) with a 100A pullup current. An overvoltage condition occurs when the voltage at SET pulls above its 0.5V threshold. When the overvoltage fault occurs (SET = 0.5V), GATE latches off, which disconnects the load from the power source (see Figure 2). After the overvoltage fault has disappeared, the fault can be unlatched by toggling SHDN or recycling the MAX6399 input.
400ns/div
VOUT 10V/div
Figure 2. GATE Timing Diagram
DC-DC CONVERTER IN OUT
VOUT = 1.8V
DC-DC Output Overvoltage Protection
The MAX6399 overvoltage protection features a fast comparator that disconnects the load from the main power line when an overvoltage condition occurs at the output of a DC-DC converter. When an overvoltage condition is sensed, the MAX6399 latches GATE off, disconnecting the power source from the DC-DC input. To unlatch GATE after an overvoltage fault has disappeared, recycle IN or toggle SHDN. Setting Output Overvoltage Threshold (SET) SET provides an accurate means of monitoring a system voltage for an overvoltage fault. Use a resistordivider network to set the desired overvoltage condition (Figure 2). SET has a rising 0.5V threshold. Begin by selecting the total end-to-end resistance, RTOTAL = R1 + R2. Choose RTOTAL to yield a total current equivalent to a minimum 100 x ISET (SET's input bias current) at the desired overvoltage threshold. For example, with an overvoltage threshold set to 1.8V: RTOTAL < 1.8V/(100 x ISET), where ISET is SET's 50nA input bias current. RTOTAL < 360k
VIN IN GATE OUT SET
GND
R1
MAX6399
R2 GND
Figure 3. Output Overvoltage Protection Configuration
Use the following formula to calculate R2: R2 = VTH x R TOTAL VOV
where VTH is the 0.5V SET rising threshold and VOV is the overvoltage condition at the output of a DC-DC converter, R2 = 100k, RTOTAL = R2 + R1, where R1 = 260k. Use a 261k standard resistor. Using a lower value for total resistance dissipates more power but provides slightly better accuracy.
6
_______________________________________________________________________________________
High-Voltage, Overvoltage/Undervoltage, Protection Switch Controller
Monitoring for DC-DC Input Undervoltage Conditions
The MAX6399 can be used to monitor for an undervoltage condition at the input of a DC-DC converter or another system voltage by connecting an external resistor-divider at OUT_SET (Figure 4). Use the following formula to calculate the undervoltage threshold (VUV). Begin by selecting the total end-to-end resistance, RTOTAL = R1 + R2. Choose RTOTAL to yield a total current equivalent to a minimum 100 x ISET (SET's input bias current) at the desired overvoltage threshold. For example, with an undervoltage threshold set to 9V: RTOTAL < 9V/(100 x ISET), where ISET is SET's 50nA input bias current. RTOTAL < 1.8M Use the following formula to calculate R2: R2 = VTH(OUT _ SET) x R TOTAL VUV where IGATE is GATE's 100A sourcing current, ILOAD is the load current at the DC-DC output at startup and COUT is the ouput's capacitor. However, most DC-DC converters have soft-start (or peak current limiting) functions that control inrush current.
MAX6399
Input Overvoltage Protection
The MAX6399 also allows overvoltage protection at the input supply (see Figure 6). When the programmed overvoltage threshold is tripped, the internal fast comparator turns off the external MOSFET, latching GATE and OUT low within t OV disconnecting the power source from the load. To unlatch the MAX6399 after an overvoltage fault, recycle IN or toggle SHDN.
Input Transients Clamping
During hot plug-in/unplug, stray inductance in the power path may cause voltage ringing above the normal input DC value, which may exceed the MAX6399's 80V maximum supply rating. An input transient such as that caused by lightning can also put a severe transient peak voltage on the input rail. The following techniques are recommended to reduce the effect of transients: * Minimize stray inductance in the power path using wide traces, and minimize loop area including the power traces and the return ground path. * Add a zener diode or transient voltage suppressor (TVS) rated below the IN absolute maximum rating (Figure 7). * Add a resistor in series with IN to limit transient current going into the input.
TO DC-DC CONTROLLER INPUT
where V TH(OUT_SET) is the 1.23V OUT_SET rising threshold and VUV is the undervoltage condition at the input of a DC-DC converter. R2 = 246k, RTOTAL = R2 + R1, where R1 = 1.554M. Use a 1.54M standard resistor. Using a lower value for total resistance dissipates more power but provides slightly better accuracy. Power-OK (POK) Output POK is an open-drain output that goes low when OUT_SET falls below its 1.23V (typ) threshold voltage. Connect a pullup resistor from POK to a supply voltage. POK asserts high when OUT_SET ramps above 1.23V typical threshold. POK provides a valid output level down to VIN = 1.5V.
Applications Information
Inrush/Slew-Rate Control
Inrush current control can be implemented by placing a capacitor at GATE (Figure 5) to slowly ramp up the GATE, thus limiting the inrush current and controlling GATE's slew rate during initial turn-on. The inrush current can be approximated using the following formula: IINRUSH = COUT CGATE x IGATE + ILOAD
VIN
IN
GATE
OUT R3
MAX6399
3.3V OUT_SET
R4 POK TO DC-DC ENABLE GND
Figure 4. Setting the Undervoltage Threshold
_______________________________________________________________________________________
7
High-Voltage, Overvoltage/Undervoltage, Protection Switch Controller MAX6399
DC-DC CONVERTER VIN IN OUT CLOAD IN GND LOAD IN IN GATE OUT TO DC-DC CONTROLLER INPUT
MAX6399
GATE CGATE SET
MAX6399
OUT GND GND
Figure 5. The MAX6399 Controlling GATE Inrush Current
Figure 6. Input Overvoltage Protection Configuration
VBATT 1k LOAD
IN
60V TVS
MAX6399
GATE OUT
Connecting a positive battery voltage to the drain of Q1 (Figure 8b) produces forward bias in its body diode, which clamps the source voltage one diode drop below the drain voltage. When the source voltage exceeds Q1's threshold voltage, Q1 turns on. Once the FET is on, the battery is fully connected to the system and can deliver power to the device and the load. An incorrectly inserted battery reverse-biases the FET's body diode. The gate remains at the ground potential. The FET remains off and disconnects the reversed battery from the system. The zener diode and resistor combination prevent damage to the p-channel MOSFET during an overvoltage condition.
Thermal Shutdown
GND
Figure 7. Protecting the MAX6399 Input from High-Voltage Transients
Reverse Voltage Protection
Use a diode or p-channel MOSFET to protect the MAX6399 during a reverse voltage insertion (Figures 8a, 8b). Low p-channel MOSFET on-resistance of 30m or less yields a forward-voltage drop of only a few millivolts (versus hundreds of millivolts for a diode, Figure 8a) thus improving efficiency in battery-operated devices.
The MAX6399 thermal-shutdown feature monitors the PC board temperature of the external MOSFET when the devices sit on the same thermal island. Good thermal contact between the MAX6399 and the external n-channel MOSFET is essential for the thermal-shutdown feature to effectively operate. Place the n-channel MOSFET as close as possible to OUT. When the MAX6399 junction temperature exceeds TJ = +150C, the thermal sensor signals the shutdown logic, turning off the GATE output, allowing the device to cool. The thermal sensor turns GATE on after the IC's junction temperature cools by 20C. For continuous operation, do not exceed the absolute maximum junctiontemperature rating of TJ = +160C.
8
_______________________________________________________________________________________
High-Voltage, Overvoltage/Undervoltage, Protection Switch Controller MAX6399
Q1
IN LOAD VBATT
IN LOAD VBATT GATE OUT
MAX6399
MAX6399
GATE OUT
GND
GND
(a)
(b)
Figure 8. Reverse Voltage Protection Using a Diode or p-Channel MOSFET
MOSFET Selection Select external MOSFETs according to the application current level. The MOSFETs on-resistance (RDS(ON)) should be chosen low enough to have minimum voltage drop at full load to limit the MOSFET power dissipation.
Chip Information
TRANSISTOR COUNT: 590 PROCESS: BiCMOS
_______________________________________________________________________________________
9
High-Voltage, Overvoltage/Undervoltage, Protection Switch Controller MAX6399
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
6, 8, &10L, DFN THIN.EPS
2
D2 D A2
N
PIN 1 ID
0.35x0.35 b
PIN 1 INDEX AREA
E DETAIL A
E2 e
[(N/2)-1] x e REF.
A1
k
C L
C L
A
L e e
L
PACKAGE OUTLINE, 6,8,10 & 14L, TDFN, EXPOSED PAD, 3x3x0.80 mm
-DRAWING NOT TO SCALE-
21-0137
G
1
COMMON DIMENSIONS SYMBOL A D E A1 L k A2 MIN. 0.70 2.90 2.90 0.00 MAX. 0.80 3.10 3.10 0.05
0.20 0.40 0.25 MIN. 0.20 REF.
PACKAGE VARIATIONS PKG. CODE T633-1 T633-2 T833-1 T833-2 T833-3 T1033-1 T1433-1 T1433-2 N 6 6 8 8 8 10 14 14 D2 1.500.10 1.500.10 1.500.10 1.500.10 1.500.10 1.500.10 1.700.10 1.700.10 E2 2.300.10 2.300.10 2.300.10 2.300.10 2.300.10 2.300.10 2.300.10 2.300.10 e 0.95 BSC 0.95 BSC 0.65 BSC 0.65 BSC 0.65 BSC 0.50 BSC 0.40 BSC 0.40 BSC JEDEC SPEC MO229 / WEEA MO229 / WEEA MO229 / WEEC MO229 / WEEC MO229 / WEEC MO229 / WEED-3 ------b 0.400.05 0.400.05 0.300.05 0.300.05 0.300.05 0.250.05 0.200.05 0.200.05 [(N/2)-1] x e 1.90 REF 1.90 REF 1.95 REF 1.95 REF 1.95 REF 2.00 REF 2.40 REF 2.40 REF
DOWNBONDS ALLOWED
NO NO NO NO YES NO YES NO
PACKAGE OUTLINE, 6,8,10 & 14L, TDFN, EXPOSED PAD, 3x3x0.80 mm
-DRAWING NOT TO SCALE-
21-0137
G
2
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
10 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 (c) 2006 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products, Inc.


▲Up To Search▲   

 
Price & Availability of MAX6399ATA-T

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X